Interferon-γ-producing immature myeloid cells confer protection against severe invasive group A Streptococcus infections
نویسندگان
چکیده
Cytokine-activated neutrophils are known to be essential for protection against group A Streptococcus infections. However, during severe invasive group A Streptococcus infections that are accompanied by neutropenia, it remains unclear which factors are protective against such infections, and which cell population is the source of them. Here we show that mice infected with severe invasive group A Streptococcus isolates, but not with non-invasive group A Streptococcus isolates, exhibit high concentrations of plasma interferon-γ during the early stage of infection. Interferon-γ is necessary to protect mice, and is produced by a novel population of granulocyte-macrophage colony-stimulating factor-dependent immature myeloid cells with ring-shaped nuclei. These interferon-γ-producing immature myeloid cells express monocyte and granulocyte markers, and also produce nitric oxide. The adoptive transfer of interferon-γ-producing immature myeloid cells ameliorates infection in wild-type and interferon-γ-deficient mice. Our results indicate that interferon-γ-producing immature myeloid cells have a protective role during the early stage of severe invasive group A Streptococcus infections.
منابع مشابه
Type I Interferons Promote Fatal Immunopathology by Regulating Inflammatory Monocytes and Neutrophils during Candida Infections
Invasive fungal infections by Candida albicans (Ca) are a frequent cause of lethal sepsis in intensive care unit patients. While a contribution of type I interferons (IFNs-I) in fungal sepsis remains unknown, these immunostimulatory cytokines mediate the lethal effects of endotoxemia and bacterial sepsis. Using a mouse model lacking a functional IFN-I receptor (Ifnar1⁻/⁻), we demonstrate a rema...
متن کاملKey role for respiratory CD103(+) dendritic cells, IFN-γ, and IL-17 in protection against Streptococcus pneumoniae infection in response to α-galactosylceramide.
BACKGROUND Exogenous activation of pulmonary invariant natural killer T (iNKT) cells, a population of lipid-reactive αβ T lymphocytes, with use of mucosal α-galactosylceramide (α-GalCer) administration, is a promising approach to control respiratory bacterial infections. We undertook the present study to characterize mechanisms leading to α-GalCer-mediated protection against lethal infection wi...
متن کاملImmunization with polyamine transport protein PotD protects mice against systemic infection with Streptococcus pneumoniae.
The human pathogen Streptococcus pneumoniae contains genes for a putative polyamine ABC transporter which are organized in an operon and designated potABCD. Polyamine transport protein D (PotD) is an extracellular protein which binds polyamines and possibly other structurally related molecules. PotD has been shown to contribute to virulence in both a murine sepsis model and a pneumonia model wi...
متن کاملProtection from group B streptococcal infection in neonatal mice by maternal immunization with recombinant Sip protein.
The protective potential of antibodies directed against group B streptococcus (GBS) Sip surface protein was determined by using the mouse neonatal infection model. Rabbit Sip-specific antibodies administered passively to pregnant mice protected their pups against a GBS lethal challenge. In addition, active immunization with purified recombinant Sip protein of female CD-1 mice induced the produc...
متن کاملInterferon-γ inhibits group B Streptococcus survival within human endothelial cells
Endothelial dysfunction is a major component of the pathophysiology of septicaemic group B Streptococcus (GBS) infections. Although cytokines have been shown to activate human umbilical vein endothelial cells (HUVECs), the capacity of interferon (IFN)-γ to enhance the microbicidal activity of HUVECs against GBS has not been studied. We report that the viability of intracellular bacteria was red...
متن کامل